
I S O T H E R M A L  K I N E T I C S  OF. S O R P T I O N  IN P O R O U S  MEDIA 
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A system of quasi-l inear parabolic equations describing nonisothermal sorption kinetics in 
porous grains is analyzed. Model equations for sorption kinetics with complete derivatives 
are  considered with regard for sorption heat re lease .  The accuracy of different model kinetic 
equations is estimated. A method is proposed to determine heat t ransfer  coefficients in 
porous grains. Experimental relationships are  obtained describing the dependence of the 
kinetic curve and mean temperatur  e distribution on t ime for porous grains of silica gel 
when benzene vapors are  used as sorbate.  Experimental relationships are  compared witfla 
those calculated on an electronic digital computer, their  agreement being satisfactory.  This 
proves the application of complete-derivative model equations to be reasonable for practical 
calculations of nouisothermal sorption kinetics. 

The kinetics of sorption in porous grains of sorbent is always accompanied by the generation of heat. 
The nonisothermal kinetics of sorption in a vacuum and in a ga s - ca r r i e r  stream have been experimentally 
investigated in a number of studies [1-3]. In the present  art icle we shall consider exact and approximate 
model equations that can be used to describe the nonisothermal kinetics of sorption in porous grains.  The 
nonisothermal kinetics of sorption is described by the equation of  material  balance in a porous grain {1), 
the equation of heat balance for the gas (liquid outside the grain (2), and the equation of heat balance for 
the solid phase of the porous grain (3), together with the appropriate initial and boundary conditions: 
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Fig. 1. Kinetic curve (q0 = 0.8; r i = 9.8 min): the 
plotted points represent  the experimental data, and 
the curve represents  the calculated function. 
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D i s t r i b u t i o n  of the  a v e r a g e  t e m p e r -  
a t u r e  in a g r a i n .  

c i t = i = l ,  clt=o=0, T i t = x = 0 ,  T ic=t=0 ,  T~:_o=0,  T [ t = o - - O .  (5) 

Condit ion (4) c o r r e s p o n d s  to  s y m m e t r y  a t  the  c e n t e r  of the  g r a i n .  To  i n t e g r a t e  the  q u a s i l i n e a r  s y s t e m  
of equa t ions ,  we m u s t  know the n u m e r i c a l  p a r a m e t e r s .  (D i, D T,  k, v, X0, • a ,  Q*), w h i c h a r e  v e r y  diff icul t  
to  d e t e r m i n e  e x p e r i m e n t a l l y .  I t  i s  t h e r e f o r e  n e c e s s a r y  to  s i m p l i f y  the  s y s t e m  (1)-(5) in such a way  tha t ,  
in the  f i r s t  p l ace ,  we r e t a i n  a s m a l l e r  n u m b e r  of p a r a m e t e r s  and,  in the  second p l ace ,  the  s y s t e m  will  be  
a s y s t e m  of equa t ions  tn to ta l  d e r i v a t i v e s .  Such a mode l  equat ion  f o r  the  k ine t i c s  in o r d i n a r y  d e r i v a t i v e s  
can be  u sed  f o r  so lv ing  p r o b l e m s  of so rp t t on  d y n a m i c s  in a g a s - c a r r i e r  s t r e a m .  Wr i t i ng  
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f~ q =  (1 -!-v)i  r'qdr,  T *  =: ( l - ! -v)  rVTdr 
6' 0 

f o r  g ( c )  = 1 ,  t ak ing  accoun t  of  the  s y s t e m  (1)-(5),  we can w r i t e  the  mode l  s y s t e m  of equat ions  fo r  n o n i s o -  
t h e r m a l  so rp t t on  k ine t i c s :  

d~_q = i]o, ~/qo)[ 1 --or  (q~ T*)], J] = (1 + v)(3 -- v), (6) 
dt 

--  .To :maT*  -? Q \d t  ' ~*]~ o =: O, q!~=o = O, (7) dt = 

qo = max (q), To* = max (~r*), -ff = f (c, 'F~'), g. =- f-1. (8) 

The  func t ions  ~ and p a r e  found f r o m  a n u m e r i c a l  so lu t ion  of the  exac t  q u a s i l i n e a r  equa t ions  (1)-(5): 
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T h e  g r a p h s  ob ta ined  f r o m  E q s .  (9), (10) a r e  p r o c e s s e d  by the  m e t h o d s  of l e a s t  s q u a r e s  in o r d e r  to  obta in  
s i m p l e  ana ly t i c  funct ional  r e l a t i o n s h i p s .  F r o m  p r o c e s s i n g  of a n u m b e r  of r e l a t i o n s h i p s  it is  found tha t  
t he  m o s t  s u c c e s s f u l  ana ly t i c  f o r m  of the  func t ions  is  the  fol lowing:  
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In t h i s  f o r m u l a t i o n  the  mode l  equa t ions  (6)-(8) a r e  inconvenien t ,  s ince  in o r d e r  to  def ine  the  funct ions  
(9), (10), we m u s t  p r o c e e d  each  t i m e  to  a new n u m e r i c a l  i n t eg ra t ion  of the  s y s t e m  (1)-(5) f o r  the  new p a r a -  
m e t e r s  (I) i ,  D T ,  X0- Xi, a ,  Q . ) .  I t  h a s b e e n  shown e x p e r i m e n t a l l y  tha t  the  t e m p e r a t u r e  does  not  v a r y  v e r y  
m u c h  du r ing  the  so rp t t on  p r o c e s s ,  and t h e r e f o r e  it ha s  been p r o p o s e d  to  u s e  the  fo l lowing a p p r o x i m a t e  
s y s t e m  of mode l  k ine t i c  equa t ions :  

@- = ~ (~) i1 - ~ (~, ~*)], (13) dt 

dY'* --m3T* + 
- d t  - Q - ~ -  �9 (14) 
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We calcula te  the function r in Eq.  (13), with T* = 0, for  va r ious  types  of i so the rms ,  i . e . ,  we essen t ia l ly  
d e t e r m i n e  the function w for  q01~*=0 = q~ and then subst i tute  q01~, co = q0 into the a rgument  of th is  function. 

The mos t  widely used i s o t he rm  is  the Langmui r  i so therm:  

q = -  pc 

1 t p c  
:~* ] 1 q 

= p e x p  --Qo , ~ =  - - ,  
!. 1 -i-T* p- 1 - - q  

o p 
q o :  , qo-- l + p "  (15) 

F o r  the i s o t h e r m  (15) the f o r m  of Eqs .  (13)-(14) is  convenient,  and in a ce r ta in  sense  it is un ive r sa l .  
Specif ical ly,  once we have calculated the coeff ic ients  a n in (11) numer ica l ly ,  with T* = 0, for  some  
Langmui r  i so th e rm  p a r a m e t e r s  p, we can graphica l ly  cons t ruc t  the function a n = F(p), and us ing  th is  
g raph ,  we can eas i ly  find the coeff icients  a n for  any p a r a m e t e r s  p. 

Knowing the coeff ic ients ,  we can obtain the analyt ic  fo rm of the function ~0(~/q0). The  l i nea r  equation 
(14) is sui table,  s ince by using this  equation we can calcula te  the coeff icients  m 3, Q. Taking account of 
the  proposed method,  f r o m  Eq.  (14) we find the f i r s t  and second pr incipal  momen t s :  

0 - - ~ (~*) + Qqo, - ~  (~*) = - ~ %  (~*) + Q t o s  Q ~  (~), (16) 

a~(T*) = t" T*dt, % ( q y =  f q-dt, a~ (T*) = f t~l'*dt, qo = q0(to) (17) 
6' "o o 

Solving the a lgeb ra i c  s y s t e m  (16), we obtain 

- ] ma = al (~*) A_I, Q = l__ ~__a. (7*) A -1, A = a, ( :F*)+ % (T*) • ~ - c z l  (T*) - -  t o 
I 

qo 
(18) 

Making use  of the exper imenta l  functions T~(t), q(t), we calcula te  the momen t s  f rom the re la t ions  (17), 
and us ing  these ,  we find the values  of the coeff ic ients  m 3, Q f r o m  (18). 

In o rde r  to  ve r i fy  the model equations (13)-(14), we took kinet ic  cu rves  and t e m p e r a t u r e  curves  on a 
dynamic  appa ra tus .  The r e s u l t s  a r e  shown in F igs .  1 and 2. 

The sorbent  used was spher ica l  f ine-gra ined  si l ica gel with a gra in  d i a m e t e r  of 2 .5  m m .  F o r  the 
so rba te  we used benzene vapo r s  with P/Ps  = 0.3; Q0 = + 4; Q = 0.19; m 3 = 12.8; T~ = 293r The i so the rm 
for  such benzene v a p o r s  can be desc r ibed  by a Langmui r  curve  with p a r a m e t e r  p -- 4. The t e m p e r a t u r e  
was m e a s u r e d  by means  of a copper - -Cons tan tan  the rmocouple  (0.02 m m  thick).  As the ave r age  t e m p e r a -  
t u r e  of the gra in ,  we took the ten ta t ive  a r i t h m e t i c - m e a n  t e m p e r a t u r e  at the center  of the gra in  and n e a r  
i ts  p e r i p h e r y .  The theore t ica l  functions q(t), T*(t) were  calculated as  fol lows.  The quas i l inear  equation (1) 
with g(c) = 1, u =  0 w a s n u m e r i c a l l y i n t e g r a t e d o n t h e  B~SM-6 compute r .  F r o m  Eq.  (9) we found the f o r m  
of the function ~0(q/q ~ and then the function w(q/q0). The coeff icients  m 3, Q were  found by the method 
indicated above,  i . e . ,  f r o m  Eqs .  (17), (18), and the quant i t ies  Q . ,  Q0 were  found by using Q, which had 
a l r eady  been de te rmined .  The t h e r m a l  effect  of the sorpt ion,  Q . ,  was found to be the s ame  by the p r o -  
posed method as by the method of graphical  p r o c e s s i n g  of i s o s t e r e s  [4]. The known values  of m s and Q 
were  used for  n u m e r i c a l l y  in tegra t ing Eqs .  (13), (14) on the compute r  by the Runge--Kutta  method.  The 
sma l l  d i f fe rences  between the exper imenta l  and calculated r e su l t s  a r e  explained by the fact  that  in Eq.  (14) 
p = l .  

To get m o r e  exact  calcula t ions  for  T*(t),  the  sy s t em (6), (7) mus t  be used instead of (13), (14), but 
the method of de te rmin ing  m 3, Q mus t  be the  s a m e  as  was used  for  the sy s t em (13), (14). The f o r m  of 
the function p m a y  be  se lected in va r ious  ways .  Exper ience  indicates  that  the mos t  successfu l  way is to 
choose  p in a manne r  analogous to ~0. Analys is  shows that  for  p # 1 the in terval  for  t ime  ~ in the n u m e r i -  
cal  integrat ion is reduced by a fac tor  of a lmos t  10 (and the computat ion t ime  is  p ropor t iona l ly  inc reased) .  
Since the exper imenta l  T* r e s u l t s  do not d i f fer  much f r o m  those calculated by Eq.  (14), us ing  Eqs .  (13), 
(14) fo r  calculat ing t henon i s o t he rm a l  k inet ics  and dynamics  of sorpt ion  is  a r easonab le  p rocedure ,  s ince 
th is  saves  a cons iderab le  amount of compute r  t i m e .  
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is the concentra t ion of so rba te  m a t e r i a l  within a porous  grain  of sorbent;  
is the concentra t ion of absorbed  ma te r i a l ;  
is  the coefficient  for  taking account  of the var ia t ion  of the diffusion coefficient  as a function of 
concentrat ion;  
is  the effect ive diffusivity within a porous  grain;  
is  the s y m m e t r y  p a r a m e t e r  (v = 2 for  a spher ica l  gra in  of radius  a ,  v = 1 for  a cyl indrical  gra in  
of rad ius  o,  v = 0 fo r  g ra ins  which have the shape of p la tes  with th ickness  2~); 
Ls the t h e r m a l  conductivity of the gas  diquid) within the grain;  
Ls the coefficient  of t h e r m a l  diffusion of t h e g a s  (liquid) within the grain;  
~s the coefficient  of heat  exchange of the gas  (liquid) with the solid phase  of the porous  grain;  
~s the density of the gas  (liquid); 
Ls the t h e r m a l  capaci ty  of the gas (liquid); 
Ls the  t h e r m a l  conductivity of the solid phase  of the porous  grain;  
~s the t h e r m a l  oapacity of the solid phase  of the porous  grain;  
~s the densi ty of the solid phase  of the porous  gra in ;  
Ls the t h e r m a l  effect  of adsorpt ion;  
a r e  the t r u e t e m p e r a t u r e s  in~ of the gas  {liquid) and the solid phase  of the porous  gra in ,  r e s p e c -  
t ively;  
is  the t e m p e r a t u r e  of the surrounding med ium in ~ ;  
is the gas  constant .  

= t ' D i / ~ 2 ;  
k = dq(0)/dc; 
r = r ' / a ;  

X = kx0/Di;  
~r = kDT/Di ;  
y a k/~ 2 cp Di; 

• = x[kfbi; 
Yi = ak/~CT ~T Di; 
Q = Q,/c T~TT~ 
Q0 = Q*/RT0; 
% = T~ (1 + T); 
T~:  T~ (1 + T); 
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